1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
| #include <iostream> #include <cstring> #include <cmath> #define maxn 1000010 #define ll long long using namespace std;
const int p = 998244353; inline int add(int x, int y) { return (x += y) >= p ? x - p : x; } inline int mul(int x, int y) { return 1ll * x * y % p; } inline int add(initializer_list<int> lst) { int s = 0; for (auto t : lst) s = add(s, t); return s; } inline int mul(initializer_list<int> lst) { int s = 1; for (auto t : lst) s = mul(s, t); return s; } int pow_mod(int x, ll n) { int s = 1; for (; n; n >>= 1, x = mul(x, x)) if (n & 1) s = mul(s, x); return s; }
int pri[maxn], phi[maxn], cnt; bool isp[maxn]; void init_isp(int n) { phi[1] = 1; for (int i = 2; i <= n; ++i) { if (!isp[i]) pri[++cnt] = i, phi[i] = i - 1; for (int j = 1; j <= cnt && i * pri[j] <= n; ++j) { isp[i * pri[j]] = 1; if (i % pri[j] == 0) { phi[i * pri[j]] = pri[j] * phi[i]; break; } phi[i * pri[j]] = (pri[j] - 1) * phi[i]; } } for (int i = 1; i <= n; ++i) phi[i] = add(phi[i], phi[i - 1]); }
const int inv2 = pow_mod(2, p - 2); inline int F1(ll n) { n %= p; return mul({ (int) n, (int) n + 1, inv2 }); }
namespace Phi { const int N = 1000000; ll n; int g[maxn]; bool vis[maxn]; int sn;
void init(ll _n) { n = _n; sn = sqrt(n); for (int i = 1; i <= 2 * sn; ++i) vis[i] = 0; } int get(ll x) { return x <= sn ? x : sn * 2 - n / x + 1; } int calc(ll n) { if (n <= N) return phi[n]; int id = get(n); if (vis[id]) return g[id]; int ans = F1(n); for (ll l = 2, r; l <= n; l = r + 1) { r = n / (n / l); ans = add(ans, p - mul((r - l + 1) % p, calc(n / l))); } return vis[id] = 1, g[id] = ans; } }
namespace Fib { struct Matrix { static const int n = 2; int a[n + 1][n + 1]; Matrix() { clear(); } inline void setone() { clear(); for (int i = 1; i <= n; ++i) a[i][i] = 1; } inline void clear() { fill(a[0], a[0] + (n + 1) * (n + 1), 0); } friend Matrix operator * (const Matrix &u, const Matrix &v) { Matrix w; for (int k = 1; k <= n; ++k) for (int i = 1; i <= n; ++i) for (int j = 1; j <= n; ++j) w.a[i][j] = add(w.a[i][j], mul(u.a[i][k], v.a[k][j])); return w; } }; Matrix pow(Matrix x, ll n) { Matrix s; s.setone(); for (; n; n >>= 1, x = x * x) if (n & 1) s = s * x; return s; } int calc(ll n) { Matrix x, s; x.a[1][1] = x.a[1][2] = x.a[2][1] = 1; s.a[1][1] = s.a[2][1] = 1; return add((pow(x, n) * s).a[1][1], p - 1); } }
ll n;
int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr);
cin >> n; int ans = 0; Phi::init(n); init_isp(1000000); for (ll l = 1, r; l <= n; l = r + 1) { r = n / (n / l); ans = add(ans, mul(add(Fib::calc(r), p - Fib::calc(l - 1)), Phi::calc(n / l))); } cout << add(mul(2, ans), p - Fib::calc(n)) << "\n"; return 0; }
|