Luogu P4841 [集训队作业2013]城市规划

题目描述

https://www.luogu.com.cn/problem/P4841

简要题意:给定 $n$,求 $n$ 个点有标号简单无向连通图的数量

$n\le 1.3\times 10^5$

Solution

我们令 $g_n$ 表示 $n$ 个点的简单无向图的数量,$f_n$ 表示 $n$ 个点简单无向连通图的数量,则 $g_n=2^{\binom{n}{2}}$,我们枚举 $1$ 号点所在的位置,可以得到 $g_n=\sum_{i=1}^n\binom{n-1}{i-1}f_ig_{n-i}$,这个式子把 $f_n$ 提到左边就可以直接分治 $NTT$,时间复杂度 $O(n\log^2 n)$,我们考虑继续化简

我们令 $H(x)=\sum_{i=1}^n\frac{g_i}{(i-1)!},F(x)=\sum_{i=1}^n\frac{f_i}{(i-1)!},G(x)=\sum_{i=0}^n\frac{g_i}{i!}$,那么 $F(x)=H(x)G^{-1}(x)$,我们只需要一个多形式求逆,时间复杂度 $O(n\log n)$

另外我们考虑生成函数,我们令 $F(x)$ 表示简单无向连通图的指数生成函数,$G(x)$ 表示简单无向图的指数生成函数,根据指数公式定理,我们可以得到 $e^{F(x)}=G(x)$,那么 $F(x)=\ln G(x)$

现在给出一个求逆的代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#include <iostream>
#include <vector>
#include <algorithm>
#define maxn 130010
#define ll long long
using namespace std;

const int p = 1004535809;
inline int add(int x, int y) { return (x += y) >= p ? x - p : x; }
inline int mul(int x, int y) { return 1ll * x * y % p; }
inline int add(initializer_list<int> lst) { int s = 0; for (auto t : lst) s = add(s, t); return s; }
inline int mul(initializer_list<int> lst) { int s = 1; for (auto t : lst) s = mul(s, t); return s; }
ll pow_mod(ll x, ll n) {
ll s = 1;
for (; n; n >>= 1, x = x * x % p)
if (n & 1) s = s * x % p;
return s;
}

#define Poly vector<int>
#define len(A) ((int) A.size())
namespace Pol {
Poly operator - (const int &v, const Poly &a) {
Poly res(a);
for (int i = 0; i < len(res); ++i) res[i] = p - res[i];
res[0] = add(res[0], v); return res;
}
Poly operator - (const Poly &a, const int &v) {
Poly res(a); res[0] = add(res[0], p - v); return res;
}
Poly operator * (const Poly &a, const int &v) {
Poly res(a);
for (int i = 0; i < len(res) ; ++i) res[i] = mul(res[i], v);
return res;
}

const int N = 4200000;
const int G = 3;

int P[N], inv[N], fac[N];
void init_P(int n) {
int l = 0; while ((1 << l) < n) ++l;
for (int i = 0; i < n; ++i) P[i] = (P[i >> 1] >> 1) | ((i & 1) << l - 1);
}
void init_C() {
if (fac[0]) return ;
fac[0] = 1; for (int i = 1; i < N; ++i) fac[i] = mul(fac[i - 1], i);
inv[N - 1] = pow_mod(fac[N - 1], p - 2); for (int i = N - 2; ~i; --i) inv[i] = mul(inv[i + 1], i + 1);
}
vector<int> init_W(int n) {
vector<int> w(n); w[1] = 1;
for (int i = 2; i < n; i <<= 1) {
auto w0 = w.begin() + i / 2, w1 = w.begin() + i;
int wn = pow_mod(G, (p - 1) / (i << 1));
for (int j = 0; j < i; j += 2)
w1[j] = w0[j >> 1], w1[j + 1] = mul(w1[j], wn);
}
return w;
} auto w = init_W(1 << 21);
void DIT(Poly &a) {
int n = len(a);
for (int k = n >> 1; k; k >>= 1)
for (int i = 0; i < n; i += k << 1)
for (int j = 0; j < k; ++j) {
int x = a[i + j], y = a[i + j + k];
a[i + j + k] = mul(add(x, p - y), w[k + j]), a[i + j] = add(x, y);
}
}
void DIF(Poly &a) {
int n = len(a);
for (int k = 1; k < n; k <<= 1)
for (int i = 0; i < n; i += k << 1)
for (int j = 0; j < k; ++j) {
int x = a[i + j], y = mul(a[i + j + k], w[k + j]);
a[i + j + k] = add(x, p - y), a[i + j] = add(x, y);
}
int inv = pow_mod(n, p - 2);
for (int i = 0; i < n; ++i) a[i] = mul(a[i], inv);
reverse(a.begin() + 1, a.end());
}
Poly operator * (const Poly &A, const Poly &B) {
int n = 1, n1 = len(A), n2 = len(B); while (n < n1 + n2 - 1) n <<= 1; init_P(n);
Poly a(n), b(n);
for (int i = 0; i < n1; ++i) a[i] = add(A[i], p);
for (int i = 0; i < n2; ++i) b[i] = add(B[i], p);
DIT(a); DIT(b);
for (int i = 0; i < n; ++i) a[i] = mul(a[i], b[i]);
DIF(a); a.resize(n1 + n2 - 1); return a;
}
Poly MMul(const Poly &A, const Poly &B) { // 差卷积, 默认 A 和 B 的长度相同
int n = 1, L = len(A); while (n < 2 * L - 1) n <<= 1; init_P(n);
Poly a(n), b(n);
for (int i = 0; i < L; ++i) a[i] = add(A[i], p);
for (int i = 0; i < L; ++i) b[i] = add(B[i], p);
reverse(b.begin(), b.begin() + L);
DIT(a); DIT(b);
for (int i = 0; i < n; ++i) a[i] = mul(a[i], b[i]);
DIF(a); a.resize(L); reverse(a.begin(), a.end()); return a;
}
Poly Der(const Poly &a) {
Poly res(a);
for (int i = 0; i < len(a) - 1; ++i) res[i] = mul(i + 1, res[i + 1]);
res[len(a) - 1] = 0; return res;
}
Poly Int(const Poly &a) {
static int inv[N];
if (!inv[1]) {
inv[1] = 1;
for (int i = 2; i < N; ++i) inv[i] = mul(p - p / i, inv[p % i]);
}
Poly res(a); res.resize(len(a) + 1);
for (int i = len(a); i; --i) res[i] = mul(res[i - 1], inv[i]);
res[0] = 0; return res;
}
Poly Inv(const Poly &a) {
Poly res(1, pow_mod(a[0], p - 2));
int n = 1; while (n < len(a)) n <<= 1;
for (int k = 2; k <= n; k <<= 1) {
int L = 2 * k; init_P(L); Poly t(L);
copy_n(a.begin(), min(k, len(a)), t.begin());
t.resize(L); res.resize(L);
DIT(res); DIT(t);
for (int i = 0; i < L; ++i) res[i] = mul(res[i], add(2, p - mul(t[i], res[i])));
DIF(res); res.resize(k);
} res.resize(len(a)); return res;
}
Poly Offset(const Poly &a, int c) {
int n = len(a); init_C();
Poly t1(n), t2(n);
for (int i = 0; i < n; ++i) t1[i] = mul(pow_mod(c, i), inv[i]);
for (int i = 0; i < n; ++i) t2[i] = mul(a[i], fac[i]);
t1 = MMul(t1, t2);
for (int i = 0; i < n; ++i) t1[i] = mul(t1[i], inv[i]);
return t1;
}
pair<Poly, Poly> Divide(const Poly &a, const Poly &b) {
int n = len(a), m = len(b);
Poly t1(a.rbegin(), a.rbegin() + n - m + 1), t2(b.rbegin(), b.rend()); t2.resize(n - m + 1);
Poly Q = Inv(t2) * t1; Q.resize(n - m + 1); reverse(Q.begin(), Q.end());
Poly R = Q * b; R.resize(m - 1); for (int i = 0; i < len(R); ++i) R[i] = add(a[i], p - R[i]);
return make_pair(Q, R);
}
Poly Ln(const Poly &a) {
Poly res = Int(Der(a) * Inv(a));
res.resize(len(a)); return res;
}
Poly Exp(const Poly &a) {
Poly res(1, 1);
int n = 1; while (n < len(a)) n <<= 1;
for (int k = 2; k <= n; k <<= 1) {
Poly t(res.begin(), res.end()); t.resize(k); t = Ln(t);
for (int i = 0; i < min(len(a), k); ++i) t[i] = add(a[i], p - t[i]); t[0] = add(t[0], 1);
res = res * t; res.resize(k);
} res.resize(len(a)); return res;
}
Poly Sqrt(const Poly &a) { // a[0] = 1
Poly res(1, 1); ll inv2 = pow_mod(2, p - 2);
int n = 1; while (n < len(a)) n <<= 1;
for (int k = 2; k <= n; k <<= 1) {
Poly t(res.begin(), res.end()), ta(a.begin(), a.begin() + min(len(a), k));
t.resize(k); t = Inv(t) * ta;
res.resize(k); for (int i = 0; i < k; ++i) res[i] = mul(add(res[i], t[i]), inv2);
} res.resize(len(a)); return res;
}
Poly Pow(const Poly &a, int k) { // a[0] = 1
return Exp(Ln(a) * k);
}
Poly Pow(const Poly &a, int k, int kk) {
int n = len(a), t = n, m, v, inv, powv; Poly res(n);
for (int i = n - 1; ~i; --i) if (a[i]) t = i, v = a[i];
if (k && t >= (n + k - 1) / k) return res;
if (t == n) { if (!k) res[0] = 1; return res; }
m = n - t * k; res.resize(m);
inv = pow_mod(v, p - 2); powv = pow_mod(v, kk);
for (int i = 0; i < m; ++i) res[i] = mul(a[i + (k > 0) * t], inv);
res = Exp(Ln(res) * k); res.resize(n);
for (int i = m - 1; ~i; --i) {
ll tmp = mul(res[i], powv);
res[i] = 0, res[i + t * k] = tmp;
}
return res;
}
} // namespace Pol

int fac[maxn], inv[maxn];
void init_C(int n) {
fac[0] = 1; for (int i = 1; i <= n; ++i) fac[i] = mul(fac[i - 1], i);
inv[n] = pow_mod(fac[n], p - 2); for (int i = n - 1; ~i; --i) inv[i] = mul(inv[i + 1], (i + 1));
}

int n;

int pp[maxn];

int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr); cout.tie(nullptr);

cin >> n; init_C(n);
for (int i = 0; i <= n; ++i) pp[i] = pow_mod(2, 1ll * i * (i - 1) / 2);
Poly A(n + 1), B(n + 1);
for (int i = 0; i <= n; ++i) A[i] = mul(pp[i], inv[i]);
for (int i = 1; i <= n; ++i) B[i] = mul(pp[i], inv[i - 1]);
Poly res = Pol::operator*(Pol::Inv(A), B);
cout << mul(res[n], fac[n - 1]) << "\n";
return 0;
}