1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
| #include <iostream> #include <vector> #include <random> #include <chrono> #include <map> #include <algorithm> #define maxn 500010 #define ll long long using namespace std;
const int p = 998244353; inline int add(int x, int y) { return (x += y) >= p ? x - p : x; } inline int mul(int x, int y) { return 1ll * x * y % p; } inline int add(initializer_list<int> lst) { int s = 0; for (auto t : lst) s = add(s, t); return s; } inline int mul(initializer_list<int> lst) { int s = 1; for (auto t : lst) s = mul(s, t); return s; } ll pow_mod(ll x, ll n) { ll s = 1; for (; n; n >>= 1, x = x * x % p) if (n & 1) s = s * x % p; return s; }
#define Poly vector<int> #define len(A) ((int) A.size()) namespace Pol { inline int add(int a, int b) { return (a += b) >= p ? a -= p : a; } inline int mul(int a, int b) { return 1ll * a * b % p; } Poly operator - (const int &v, const Poly &a) { Poly res(a); for (int i = 0; i < len(res); ++i) res[i] = p - res[i]; res[0] = add(res[0], v); return res; } Poly operator - (const Poly &a, const int &v) { Poly res(a); res[0] = add(res[0], p - v); return res; } Poly operator * (const Poly &a, const int &v) { Poly res(a); for (int i = 0; i < len(res) ; ++i) res[i] = mul(res[i], v); return res; } const int N = 4200000; const int G = 3; int P[N], inv[N], fac[N]; void init_P(int n) { int l = 0; while ((1 << l) < n) ++l; for (int i = 0; i < n; ++i) P[i] = (P[i >> 1] >> 1) | ((i & 1) << l - 1); } void init_C() { if (fac[0]) return ; fac[0] = 1; for (int i = 1; i < N; ++i) fac[i] = mul(fac[i - 1], i); inv[N - 1] = pow_mod(fac[N - 1], p - 2); for (int i = N - 2; ~i; --i) inv[i] = mul(inv[i + 1], i + 1); } vector<int> init_W(int n) { vector<int> w(n); w[1] = 1; for (int i = 2; i < n; i <<= 1) { auto w0 = w.begin() + i / 2, w1 = w.begin() + i; int wn = pow_mod(G, (p - 1) / (i << 1)); for (int j = 0; j < i; j += 2) w1[j] = w0[j >> 1], w1[j + 1] = mul(w1[j], wn); } return w; } auto w = init_W(1 << 21); void DIT(Poly &a) { int n = len(a); for (int k = n >> 1; k; k >>= 1) for (int i = 0; i < n; i += k << 1) for (int j = 0; j < k; ++j) { int x = a[i + j], y = a[i + j + k]; a[i + j + k] = mul(add(x, p - y), w[k + j]), a[i + j] = add(x, y); } } void DIF(Poly &a) { int n = len(a); for (int k = 1; k < n; k <<= 1) for (int i = 0; i < n; i += k << 1) for (int j = 0; j < k; ++j) { int x = a[i + j], y = mul(a[i + j + k], w[k + j]); a[i + j + k] = add(x, p - y), a[i + j] = add(x, y); } int inv = pow_mod(n, p - 2); for (int i = 0; i < n; ++i) a[i] = mul(a[i], inv); reverse(a.begin() + 1, a.end()); } Poly operator * (const Poly &A, const Poly &B) { int n = 1, n1 = len(A), n2 = len(B); while (n < n1 + n2 - 1) n <<= 1; init_P(n); Poly a(n), b(n); for (int i = 0; i < n1; ++i) a[i] = add(A[i], p); for (int i = 0; i < n2; ++i) b[i] = add(B[i], p); DIT(a); DIT(b); for (int i = 0; i < n; ++i) a[i] = mul(a[i], b[i]); DIF(a); a.resize(n1 + n2 - 1); return a; } Poly MMul(const Poly &A, const Poly &B) { int n = 1, L = len(A); while (n < 2 * L - 1) n <<= 1; init_P(n); Poly a(n), b(n); for (int i = 0; i < L; ++i) a[i] = add(A[i], p); for (int i = 0; i < L; ++i) b[i] = add(B[i], p); reverse(b.begin(), b.begin() + L); DIT(a); DIT(b); for (int i = 0; i < n; ++i) a[i] = mul(a[i], b[i]); DIF(a); a.resize(L); reverse(a.begin(), a.end()); return a; } Poly Der(const Poly &a) { Poly res(a); for (int i = 0; i < len(a) - 1; ++i) res[i] = mul(i + 1, res[i + 1]); res[len(a) - 1] = 0; return res; } Poly Int(const Poly &a) { static int inv[N]; if (!inv[1]) { inv[1] = 1; for (int i = 2; i < N; ++i) inv[i] = mul(p - p / i, inv[p % i]); } Poly res(a); res.resize(len(a) + 1); for (int i = len(a); i; --i) res[i] = mul(res[i - 1], inv[i]); res[0] = 0; return res; } Poly Inv(const Poly &a) { Poly res(1, pow_mod(a[0], p - 2)); int n = 1; while (n < len(a)) n <<= 1; for (int k = 2; k <= n; k <<= 1) { int L = 2 * k; init_P(L); Poly t(L); copy_n(a.begin(), min(k, len(a)), t.begin()); t.resize(L); res.resize(L); DIT(res); DIT(t); for (int i = 0; i < L; ++i) res[i] = mul(res[i], add(2, p - mul(t[i], res[i]))); DIF(res); res.resize(k); } res.resize(len(a)); return res; } Poly Offset(const Poly &a, int c) { int n = len(a); init_C(); Poly t1(n), t2(n); for (int i = 0; i < n; ++i) t1[i] = mul(pow_mod(c, i), inv[i]); for (int i = 0; i < n; ++i) t2[i] = mul(a[i], fac[i]); t1 = MMul(t1, t2); for (int i = 0; i < n; ++i) t1[i] = mul(t1[i], inv[i]); return t1; } pair<Poly, Poly> Divide(const Poly &a, const Poly &b) { int n = len(a), m = len(b); Poly t1(a.rbegin(), a.rbegin() + n - m + 1), t2(b.rbegin(), b.rend()); t2.resize(n - m + 1); Poly Q = Inv(t2) * t1; Q.resize(n - m + 1); reverse(Q.begin(), Q.end()); Poly R = Q * b; R.resize(m - 1); for (int i = 0; i < len(R); ++i) R[i] = add(a[i], p - R[i]); return make_pair(Q, R); } Poly Ln(const Poly &a) { Poly res = Int(Der(a) * Inv(a)); res.resize(len(a)); return res; } Poly Exp(const Poly &a) { Poly res(1, 1); int n = 1; while (n < len(a)) n <<= 1; for (int k = 2; k <= n; k <<= 1) { Poly t(res.begin(), res.end()); t.resize(k); t = Ln(t); for (int i = 0; i < min(len(a), k); ++i) t[i] = add(a[i], p - t[i]); t[0] = add(t[0], 1); res = res * t; res.resize(k); } res.resize(len(a)); return res; } Poly Sqrt(const Poly &a) { Poly res(1, 1); ll inv2 = pow_mod(2, p - 2); int n = 1; while (n < len(a)) n <<= 1; for (int k = 2; k <= n; k <<= 1) { Poly t(res.begin(), res.end()), ta(a.begin(), a.begin() + min(len(a), k)); t.resize(k); t = Inv(t) * ta; res.resize(k); for (int i = 0; i < k; ++i) res[i] = mul(add(res[i], t[i]), inv2); } res.resize(len(a)); return res; } Poly Pow(const Poly &a, int k) { return Exp(Ln(a) * k); } Poly Pow(const Poly &a, int k, int kk) { int n = len(a), t = n, m, v, inv, powv; Poly res(n); for (int i = n - 1; ~i; --i) if (a[i]) t = i, v = a[i]; if (k && t >= (n + k - 1) / k) return res; if (t == n) { if (!k) res[0] = 1; return res; } m = n - t * k; res.resize(m); inv = pow_mod(v, p - 2); powv = pow_mod(v, kk); for (int i = 0; i < m; ++i) res[i] = mul(a[i + (k > 0) * t], inv); res = Exp(Ln(res) * k); res.resize(n); for (int i = m - 1; ~i; --i) { int tmp = mul(res[i], powv); res[i] = 0, res[i + t * k] = tmp; } return res; } }
int fac[maxn], inv[maxn]; void init_C(int n) { fac[0] = 1; for (int i = 1; i <= n; ++i) fac[i] = mul(fac[i - 1], i); inv[n] = pow_mod(fac[n], p - 2); for (int i = n - 1; ~i; --i) inv[i] = mul(inv[i + 1], i + 1); }
int a, b, n, m, q[maxn];
int pr, rp, pp[maxn], invpp[maxn];
void work() { cin >> m >> a >> b; pr = a * pow_mod(b, p - 2) % p; rp = add(1, p - pr); for (int i = 1; i <= m; ++i) cin >> q[i]; n = *max_element(q + 1, q + m + 1) + 1; for (int i = 0; i <= n; ++i) { pp[i] = pow_mod(rp, 1ll * i * (i - 1) / 2); invpp[i] = pow_mod(pp[i], p - 2); } Poly A(n), B(n); for (int i = 0; i < n; ++i) A[i] = mul(invpp[i], inv[i]); A[0] = 1; for (int i = 1; i < n; ++i) B[i] = mul(invpp[i], inv[i - 1]); A = Pol::operator*(Pol::Inv(A), B); for (int i = 0; i < n; ++i) A[i] = mul({ A[i], fac[i - 1], inv[i] }); for (int i = 0; i < n; ++i) B[i] = mul(invpp[i], inv[i]); Poly res = Pol::operator*(A, B); for (int i = 1; i <= m; ++i) cout << mul({ res[q[i]], fac[q[i]], pp[q[i]] }) << " \n"[i == m]; }
int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr);
int T; cin >> T; init_C(500000); while (T--) work(); return 0; }
|