题目描述
https://codeforces.com/gym/103466/problem/E
简要题意:令 $f_d$ 表示三维空间中与原点 $(0,0,0)$ 距离为 $d$ 的整点个数,给定 $l,r,k,p$,求 $\sum_{i=l}^r(f_i~xor~k)\bmod p$
$l\le r\le 10^{13},r-l+1\le 10^6,k\le 10^{18},p\le 3+10^{13}$
Solution
对 $\frac{f_d}{6}$ 打表能够发现这是一个积性函数,同时可以得到当 $p\bmod 4\equiv 1$ 时,$f_{p^k}=p^k$,当 $p\bmod 4 \equiv 3$ 时,$f_{p^k}=p^k+2\frac{p^k-1}{p-1}$,知道这个之后我们直接区间筛即可
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
| #include <iostream> #define maxn 4000010 #define ll long long using namespace std;
ll l, r, k, p;
int pri[maxn], cnt; bool isp[maxn]; void init_isp(int n) { for (int i = 2; i <= n; ++i) { if (!isp[i]) pri[++cnt] = i; for (int j = 1; j <= cnt && i * pri[j] <= n; ++j) { isp[i * pri[j]] = 1; if (i % pri[j] == 0) break; } } }
ll v[maxn], ans[maxn]; ll solve(ll l, ll r, ll k, ll p) { for (ll i = l; i <= r; ++i) v[i - l] = i, ans[i - l] = 1; for (int i = 1, pr = pri[i]; i <= cnt && pr <= r / pr; pr = pri[++i]) for (ll j = max(2ll, (l + pr - 1) / pr) * pr; j <= r; j += pr) { ll mk = 1; while (v[j - l] % pr == 0) v[j - l] /= pr, mk *= pr; if (pr == 2) mk = 1; else if (pr % 4 == 3) mk += 2 * (mk - 1) / (pr - 1); ans[j - l] *= mk; } for (ll i = l; i <= r; ++i) { if (v[i - l] < 1) continue; if (v[i - l] % 4 == 3) ans[i - l] *= v[i - l] + 2; else ans[i - l] *= v[i - l]; } ll res = 0; for (ll i = l; i <= r; ++i) res = (res + (ans[i - l] * 6 ^ k)) % p; return res; }
void work() { cin >> l >> r >> k >> p; cout << solve(l, r, k, p) << "\n"; }
int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr);
int T; cin >> T; init_isp(4000000); while (T--) work(); return 0; }
|