1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
| #include <iostream> #include <vector> #include <algorithm> #define maxn 270010 #define ll long long using namespace std;
int p; ll pow_mod(ll x, ll n, int p) { ll s = 1; for (; n; n >>= 1, x = x * x % p) if (n & 1) s = s * x % p; return s; }
const int mod1 = 998244353, mod2 = 1004535809, mod3 = 469762049, G = 3; const ll mod12 = 1ll * mod1 * mod2; const int inv1 = pow_mod(mod1, mod2 - 2, mod2), inv2 = pow_mod(mod12 % mod3, mod3 - 2, mod3); struct Int { int x, y, z;
Int() { x = y = z = 0; } Int(int x, int y, int z) : x(x), y(y), z(z) {} Int(int v) : x(v), y(v), z(v) {}
static inline int add(int x, int y, int p) { return (x += y) >= p ? x - p : x; } inline friend Int operator + (const Int &u, const Int &v) { return Int(add(u.x, v.x, mod1), add(u.y, v.y, mod2), add(u.z, v.z, mod3)); } inline friend Int operator - (const Int &u, const Int &v) { return Int(add(u.x, mod1 - v.x, mod1), add(u.y, mod2 - v.y, mod2), add(u.z, mod3 - v.z, mod3)); } inline friend Int operator * (const Int &u, const Int &v) { return Int(1ll * u.x * v.x % mod1, 1ll * u.y * v.y % mod2, 1ll * u.z * v.z % mod3); } inline int get() const { ll v = 1ll * add(y, mod2 - x, mod2) * inv1 % mod2 * mod1 + x; return (1ll * add(z, mod3 - v % mod3, mod3) * inv2 % mod3 * (mod12 % p) % p + v) % p; } };
typedef vector<Int> Poly; #define len(a) ((int) a.size()) namespace Pol { Poly operator - (const Int &v, const Poly &a) { Poly res(a); for (int i = 0; i < len(res); ++i) res[i] = p - res[i]; res[0] = res[0] + v; return res; } Poly operator - (const Poly &a, const Int &v) { Poly res(a); res[0] = res[0] - v; return res; } Poly operator * (const Poly &a, const Int &v) { Poly res(a); for (int i = 0; i < len(res) ; ++i) res[i] = res[i] * v; return res; } const int N = 4200000; const int Gi1 = pow_mod(G, mod1 - 2, mod1); const int Gi2 = pow_mod(G, mod2 - 2, mod2); const int Gi3 = pow_mod(G, mod3 - 2, mod3);
int P[N]; void init_P(int n) { int l = 0; while ((1 << l) < n) ++l; for (int i = 0; i < n; ++i) P[i] = (P[i >> 1] >> 1) | ((i & 1) << l - 1); } void NTT(Poly &a, int type) { static Int w[N]; int n = len(a); for (int i = 0; i < n; ++i) if (i < P[i]) swap(a[i], a[P[i]]); for (int i = 2, m = 1; i <= n; m = i, i *= 2) { Int wn = Int(pow_mod(type > 0 ? G : Gi1, (mod1 - 1) / i, mod1), pow_mod(type > 0 ? G : Gi2, (mod2 - 1) / i, mod2), pow_mod(type > 0 ? G : Gi3, (mod3 - 1) / i, mod3)); w[0] = Int(1); for (int j = 1; j < m; ++j) w[j] = wn * w[j - 1]; for (int j = 0; j < n; j += i) for (int k = 0; k < m; ++k) { Int t1 = a[j + k], t2 = a[j + k + m] * w[k]; a[j + k] = t1 + t2; a[j + k + m] = t1 - t2; } } if (type < 0) { Int inv = Int(pow_mod(n, mod1 - 2, mod1), pow_mod(n, mod2 - 2, mod2), pow_mod(n, mod3 - 2, mod3)); for (int i = 0; i < n; ++i) a[i] = a[i] * inv; } } Poly restore(Poly &a) { for (int i = 0; i < len(a); ++i) a[i] = a[i].get(); return a; } Poly operator * (const Poly &A, const Poly &B) { int n = 1, n1 = len(A), n2 = len(B); while (n < n1 + n2 - 1) n <<= 1; init_P(n); Poly a(n), b(n); copy_n(A.begin(), n1, a.begin()); copy_n(B.begin(), n2, b.begin()); NTT(a, 1); NTT(b, 1); for (int i = 0; i < n; ++i) a[i] = a[i] * b[i]; NTT(a, -1); Poly ans(n1 + n2 - 1); for (int i = 0; i < n1 + n2 - 1; ++i) ans[i] = a[i].get(); return ans; } Poly Der(const Poly &a) { Poly res(a); for (int i = 0; i < len(a) - 1; ++i) res[i] = Int(i + 1) * res[i + 1]; res[len(a) - 1] = Int(0); restore(res); return res; } Poly Inte(const Poly &a) { static int inv[N]; if (!inv[1]) { inv[1] = 1; for (int i = 2; i < N; ++i) inv[i] = 1ll * (p - p / i) * inv[p % i] % p; } Poly res(a); res.resize(len(a) + 1); for (int i = len(a); i; --i) res[i] = res[i - 1] * Int(inv[i]); res[0] = Int(0); restore(res); return res; } Poly Inv(const Poly &a) { Poly res(1, Int(pow_mod(a[0].get(), p - 2, p))); int n = 1; while (n < len(a)) n <<= 1; for (int k = 2; k <= n; k <<= 1) { Poly t(a); t.resize(k); t = t * res; t.resize(k); res = res * (2 - t); res.resize(k); } res.resize(len(a)); return res; } Poly Ln(const Poly &a) { Poly res = Inte(Der(a) * Inv(a)); res.resize(len(a)); return res; } }
int mu[maxn], pri[maxn], cnt; bool isp[maxn]; void init_isp(int n) { mu[1] = 1; for (int i = 2; i <= n; ++i) { if (!isp[i]) pri[++cnt] = i, mu[i] = -1; for (int j = 1; j <= cnt && i * pri[j] <= n; ++j) { isp[i * pri[j]] = 1; if (i % pri[j] == 0) break; mu[i * pri[j]] = -mu[i]; } } }
int n;
ll f[maxn], g[maxn]; int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr);
cin >> n >> p; Poly A(n + 1); A[0] = Int(1); init_isp(n); for (int i = 1, x; i <= n; ++i) cin >> x, A[i] = Int(x); A = Pol::Ln(A); for (int i = 1; i <= n; ++i) f[i] = A[i].get(), f[i] = f[i] * i % p; for (int i = 1; i <= n; ++i) for (int j = i; j <= n; j += i) g[j] = (g[j] + mu[j / i] * f[i]) % p; vector<int> ans; for (int i = 1; i <= n; ++i) if ((g[i] + p) % p) ans.push_back(i); cout << ans.size() << "\n"; for (auto t : ans) cout << t << " "; return 0; }
|