1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
| #include <iostream> #include <vector> #include <algorithm> #define maxn 100010 #define ll long long using namespace std;
const int p = 998244353; ll pow_mod(ll x, ll n) { ll s = 1; for (; n; n >>= 1, x = x * x % p) if (n & 1) s = s * x % p; return s; }
#define Poly vector<int> #define len(A) ((int) A.size()) namespace Pol { inline int add(int a, int b) { return (a += b) >= p ? a -= p : a; } inline int mul(int a, int b) { return 1ll * a * b % p; } Poly operator - (const int &v, const Poly &a) { Poly res(a); for (int i = 0; i < len(res); ++i) res[i] = p - res[i]; res[0] = add(res[0], v); return res; } Poly operator - (const Poly &a, const int &v) { Poly res(a); res[0] = add(res[0], p - v); return res; } Poly operator * (const Poly &a, const int &v) { Poly res(a); for (int i = 0; i < len(res) ; ++i) res[i] = mul(res[i], v); return res; } const int N = 4200000; int P[N]; void init_P(int n) { int l = 0; while ((1 << l) < n) ++l; for (int i = 0; i < n; ++i) P[i] = (P[i >> 1] >> 1) | ((i & 1) << l - 1); } void NTT(Poly &a, int type) { static int w[N]; ll G = 3, Gi = pow_mod(G, p - 2); int n = len(a); for (int i = 0; i < n; ++i) if (i < P[i]) swap(a[i], a[P[i]]); for (int i = 2, m = 1; i <= n; m = i, i *= 2) { ll wn = pow_mod(type > 0 ? G : Gi, (p - 1) / i); w[0] = 1; for (int j = 1; j < m; ++j) w[j] = wn * w[j - 1] % p; for (int j = 0; j < n; j += i) for (int k = 0; k < m; ++k) { int t1 = a[j + k], t2 = 1ll * a[j + k + m] * w[k] % p; a[j + k] = add(t1, t2); a[j + k + m] = add(t1, p - t2); } } if (type < 0) { int inv = pow_mod(n, p - 2); for (int i = 0; i < n; ++i) a[i] = mul(a[i], inv); } } Poly operator * (const Poly &A, const Poly &B) { int n = 1, n1 = len(A), n2 = len(B); while (n < n1 + n2 - 1) n <<= 1; init_P(n); Poly a(n), b(n); for (int i = 0; i < n1; ++i) a[i] = add(A[i], p); for (int i = 0; i < n2; ++i) b[i] = add(B[i], p); NTT(a, 1); NTT(b, 1); for (int i = 0; i < n; ++i) a[i] = mul(a[i], b[i]); NTT(a, -1); return a; } Poly Der(const Poly &a) { Poly res(a); for (int i = 0; i < len(a) - 1; ++i) res[i] = mul(i + 1, res[i + 1]); res[len(a) - 1] = 0; return res; } Poly Int(const Poly &a) { static int inv[N]; if (!inv[1]) { inv[1] = 1; for (int i = 2; i < N; ++i) inv[i] = mul(p - p / i, inv[p % i]); } Poly res(a); res.resize(len(a) + 1); for (int i = len(a); i; --i) res[i] = mul(res[i - 1], inv[i]); res[0] = 0; return res; } Poly Inv(const Poly &a) { Poly res(1, pow_mod(a[0], p - 2)); int n = 1; while (n < len(a)) n <<= 1; for (int k = 2; k <= n; k <<= 1) { int L = 2 * k; init_P(L); Poly t(L); copy_n(a.begin(), min(k, len(a)), t.begin()); t.resize(L); res.resize(L); NTT(res, 1); NTT(t, 1); for (int i = 0; i < L; ++i) res[i] = mul(res[i], add(2, p - mul(t[i], res[i]))); NTT(res, -1); res.resize(k); } res.resize(len(a)); return res; } pair<Poly, Poly> Divide(const Poly &a, const Poly &b) { int n = len(a), m = len(b); Poly t1(a.rbegin(), a.rbegin() + n - m + 1), t2(b.rbegin(), b.rend()); t2.resize(n - m + 1); Poly Q = Inv(t2) * t1; Q.resize(n - m + 1); reverse(Q.begin(), Q.end()); Poly R = Q * b; R.resize(m - 1); for (int i = 0; i < len(R); ++i) R[i] = add(a[i], p - R[i]); return make_pair(Q, R); } Poly Ln(const Poly &a) { Poly res = Int(Der(a) * Inv(a)); res.resize(len(a)); return res; } Poly Exp(const Poly &a) { Poly res(1, 1); int n = 1; while (n < len(a)) n <<= 1; for (int k = 2; k <= n; k <<= 1) { Poly t(res.begin(), res.end()); t.resize(k); t = Ln(t); for (int i = 0; i < min(len(a), k); ++i) t[i] = add(a[i], p - t[i]); t[0] = add(t[0], 1); res = res * t; res.resize(k); } res.resize(len(a)); return res; } Poly Sqrt(const Poly &a) { Poly res(1, 1); ll inv2 = pow_mod(2, p - 2); int n = 1; while (n < len(a)) n <<= 1; for (int k = 2; k <= n; k <<= 1) { Poly t(res.begin(), res.end()), ta(a.begin(), a.begin() + min(len(a), k)); t.resize(k); t = Inv(t) * ta; res.resize(k); for (int i = 0; i < k; ++i) res[i] = mul(add(res[i], t[i]), inv2); } res.resize(len(a)); return res; } Poly Pow(const Poly &a, int k) { return Exp(Ln(a) * k); } Poly Pow(const Poly &a, int k, int kk) { int n = len(a), t = n, m, v, inv, powv; Poly res(n); for (int i = n - 1; ~i; --i) if (a[i]) t = i, v = a[i]; if (k && t >= (n + k - 1) / k) return res; if (t == n) { if (!k) res[0] = 1; return res; } m = n - t * k; res.resize(m); inv = pow_mod(v, p - 2); powv = pow_mod(v, kk); for (int i = 0; i < m; ++i) res[i] = mul(a[i + (k > 0) * t], inv); res = Exp(Ln(res) * k); res.resize(n); for (int i = m - 1; ~i; --i) { ll tmp = mul(res[i], powv); res[i] = 0, res[i + t * k] = tmp; } return res; } }
int n, m, k, a[maxn], b[maxn];
Poly solve(int *a, int l, int r) { if (l == r) { Poly res; res.push_back(1); res.push_back(p - a[l]); return res; } int m = l + r >> 1; return Pol::operator*(solve(a, l, m), solve(a, m + 1, r)); }
ll fac[maxn], inv[maxn]; void init_C(int n) { fac[0] = 1; for (int i = 1; i <= n; ++i) fac[i] = fac[i - 1] * i % p; inv[n] = pow_mod(fac[n], p - 2); for (int i = n - 1; ~i; --i) inv[i] = inv[i + 1] * (i + 1) % p; }
int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr);
cin >> n >> m; for (int i = 1; i <= n; ++i) cin >> a[i]; for (int i = 1; i <= m; ++i) cin >> b[i]; cin >> k; init_C(k); Poly A = solve(a, 1, n), B = solve(b, 1, m); A.resize(k + 1); B.resize(k + 1); A = Pol::Der(Pol::Ln(A)); B = Pol::Der(Pol::Ln(B)); for (int i = k; i; --i) A[i] = -A[i - 1], B[i] = -B[i - 1]; A[0] = n; B[0] = m; for (int i = 0; i < k + 1; ++i) A[i] = A[i] * inv[i] % p, B[i] = B[i] * inv[i] % p; Poly res = Pol::operator*(A, B); ll invnm = pow_mod(1ll * n * m % p, p - 2); for (int i = 1; i <= k; ++i) cout << (res[i] * invnm % p * fac[i] % p + p) % p << "\n"; return 0; }
|