CF 438E The Child and Binary Tree

题目描述

http://codeforces.com/problemset/problem/438/E

简要题意:给定一个含有 $n$ 个相异正整数的序列 $c_i$,现在要求用这些数构造一个带点权的有根无标号二叉树(形态不同,二叉树不同),一棵二叉树的权值为所有点的权值的和,现在给定 $m$,求权值为 $m$ 的二叉树的个数

$n,m\le 10^5$

Solution

我们考虑 $dp$,令 $f_k$ 表示权值为 $k$ 的二叉树的个数,$f_k=\sum_{c\in S}\sum_{i=0}^{k-c}f_{i}f_{k-c-i}$,其中 $f_0=1$,那么容易得到生成函数为 $F(x)=C(x)F(x)^2+1$,解得 $F(x)=\frac{1-\sqrt {1-4C(x)}}{2C(x)}$,我们上下同乘 $1+\sqrt {1-4C(x)}$,得到 $\frac{2}{1+\sqrt {1-4C(x)}}$,那么现在我们只需要多项式开根和多项式求逆即可

时间复杂度 $O(n\log n)$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#include <iostream>
#include <vector>
#include <algorithm>
#define ll long long
using namespace std;

const int p = 998244353;

ll pow_mod(ll x, ll n) {
ll s = 1;
for (; n; n >>= 1, x = x * x % p)
if (n & 1) s = s * x % p;
return s;
}

#define Poly vector<int>
#define len(A) ((int) A.size())
namespace Pol {
inline int add(int a, int b) { return (a += b) >= p ? a -= p : a; }
inline int mul(int a, int b) { return 1ll * a * b % p; }
Poly operator - (const int &v, const Poly &a) {
Poly res(a);
for (int i = 0; i < len(res); ++i) res[i] = p - res[i];
res[0] = add(res[0], v); return res;
}
Poly operator - (const Poly &a, const int &v) {
Poly res(a); res[0] = add(res[0], p - v); return res;
}
Poly operator * (const Poly &a, const int &v) {
Poly res(a);
for (int i = 0; i < len(res) ; ++i) res[i] = mul(res[i], v);
return res;
}

const int N = 4200000;
int P[N];
void init_P(int n) {
int l = 0; while ((1 << l) < n) ++l;
for (int i = 0; i < n; ++i) P[i] = (P[i >> 1] >> 1) | ((i & 1) << l - 1);
}
void NTT(Poly &a, int type) {
static int w[N]; ll G = 3, Gi = pow_mod(G, p - 2); int n = len(a);
for (int i = 0; i < n; ++i) if (i < P[i]) swap(a[i], a[P[i]]);
for (int i = 2, m = 1; i <= n; m = i, i *= 2) {
ll wn = pow_mod(type > 0 ? G : Gi, (p - 1) / i);
w[0] = 1; for (int j = 1; j < m; ++j) w[j] = wn * w[j - 1] % p;
for (int j = 0; j < n; j += i)
for (int k = 0; k < m; ++k) {
int t1 = a[j + k], t2 = 1ll * a[j + k + m] * w[k] % p;
a[j + k] = add(t1, t2);
a[j + k + m] = add(t1, p - t2);
}
}
if (type < 0) {
int inv = pow_mod(n, p - 2);
for (int i = 0; i < n; ++i) a[i] = mul(a[i], inv);
}
}
Poly operator * (const Poly &A, const Poly &B) {
int n = 1, n1 = len(A), n2 = len(B); while (n < n1 + n2 - 1) n <<= 1; init_P(n);
Poly a(n), b(n);
for (int i = 0; i < n1; ++i) a[i] = add(A[i], p);
for (int i = 0; i < n2; ++i) b[i] = add(B[i], p);
NTT(a, 1); NTT(b, 1);
for (int i = 0; i < n; ++i) a[i] = mul(a[i], b[i]);
NTT(a, -1); return a;
}
Poly Der(const Poly &a) {
Poly res(a);
for (int i = 0; i < len(a) - 1; ++i) res[i] = mul(i + 1, res[i + 1]);
res[len(a) - 1] = 0; return res;
}
Poly Int(const Poly &a) {
static int inv[N];
if (!inv[1]) {
inv[1] = 1;
for (int i = 2; i < N; ++i) inv[i] = mul(p - p / i, inv[p % i]);
}
Poly res(a); res.resize(len(a) + 1);
for (int i = len(a); i; --i) res[i] = mul(res[i - 1], inv[i]);
res[0] = 0; return res;
}
Poly Inv(const Poly &a) {
Poly res(1, pow_mod(a[0], p - 2));
int n = 1; while (n < len(a)) n <<= 1;
for (int k = 2; k <= n; k <<= 1) {
int L = 2 * k; init_P(L); Poly t(L);
copy_n(a.begin(), min(k, len(a)), t.begin());
t.resize(L); res.resize(L);
NTT(res, 1); NTT(t, 1);
for (int i = 0; i < L; ++i) res[i] = mul(res[i], add(2, p - mul(t[i], res[i])));
NTT(res, -1); res.resize(k);
} res.resize(len(a)); return res;
}
pair<Poly, Poly> Divide(const Poly &a, const Poly &b) {
int n = len(a), m = len(b);
Poly t1(a.rbegin(), a.rbegin() + n - m + 1), t2(b.rbegin(), b.rend()); t2.resize(n - m + 1);
Poly Q = Inv(t2) * t1; Q.resize(n - m + 1); reverse(Q.begin(), Q.end());
Poly R = Q * b; R.resize(m - 1); for (int i = 0; i < len(R); ++i) R[i] = add(a[i], p - R[i]);
return make_pair(Q, R);
}
Poly Ln(const Poly &a) {
Poly res = Int(Der(a) * Inv(a));
res.resize(len(a)); return res;
}
Poly Exp(const Poly &a) {
Poly res(1, 1);
int n = 1; while (n < len(a)) n <<= 1;
for (int k = 2; k <= n; k <<= 1) {
Poly t(res.begin(), res.end()); t.resize(k); t = Ln(t);
for (int i = 0; i < min(len(a), k); ++i) t[i] = add(a[i], p - t[i]); t[0] = add(t[0], 1);
res = res * t; res.resize(k);
} res.resize(len(a)); return res;
}
Poly Sqrt(const Poly &a) { // a[0] = 1
Poly res(1, 1); ll inv2 = pow_mod(2, p - 2);
int n = 1; while (n < len(a)) n <<= 1;
for (int k = 2; k <= n; k <<= 1) {
Poly t(res.begin(), res.end()), ta(a.begin(), a.begin() + min(len(a), k));
t.resize(k); t = Inv(t) * ta;
res.resize(k); for (int i = 0; i < k; ++i) res[i] = mul(add(res[i], t[i]), inv2);
} res.resize(len(a)); return res;
}
Poly Pow(const Poly &a, int k) { // a[0] = 1
return Exp(Ln(a) * k);
}
Poly Pow(const Poly &a, int k, int kk) {
int n = len(a), t = n, m, v, inv, powv; Poly res(n);
for (int i = n - 1; ~i; --i) if (a[i]) t = i, v = a[i];
if (k && t >= (n + k - 1) / k) return res;
if (t == n) { if (!k) res[0] = 1; return res; }
m = n - t * k; res.resize(m);
inv = pow_mod(v, p - 2); powv = pow_mod(v, kk);
for (int i = 0; i < m; ++i) res[i] = mul(a[i + (k > 0) * t], inv);
res = Exp(Ln(res) * k); res.resize(n);
for (int i = m - 1; ~i; --i) {
ll tmp = mul(res[i], powv);
res[i] = 0, res[i + t * k] = tmp;
}
return res;
}
} // namespace Pol

int n, m;

int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr); cout.tie(nullptr);

cin >> m >> n; ++n; Poly A(n);
for (int i = 1, x; i <= m; ++i) {
cin >> x;
if (x < n) ++A[x];
}
for (int i = 0; i < n; ++i) A[i] *= -4; ++A[0];
A = Pol::Sqrt(A); ++A[0]; A = Pol::operator*(Pol::Inv(A), 2);
for (int i = 1; i < n; ++i) cout << A[i] << "\n";
return 0;
}