Luogu P4389 付公主的背包

题目描述

https://www.luogu.com.cn/problem/P4389

简要题意:现在有 $n$ 种物品,每种物品都有无限多个,第 $i$ 个物品的体积为 $v_i$,求恰好装满 $k,k\in[1,m]$ 的背包的方案数

$n,m\le 10^5$

Solution

容易得到生成函数 $F(x)=\prod_{i=1}^n\frac{1}{1-x^{v_i}}$,我们尝试用 $\exp$ 和 $\ln$ 来操作一下,$F(x)=exp(\ln F(x))=exp(\sum_{i=1}^n\ln\frac{1}{1-x^{v_i}})$,我们知道 $\ln(\frac{1}{1-x})=\sum_{i\ge 1}\frac{x^i}{i}$,那么 $\sum_{i=1}^n\ln\frac{1}{1-x^{v_i}}$,我们是可以在 $O(n\log n)$ 的时间内完成预处理的,这样再做一个 $exp$ 就结束了

时间复杂度 $O(n\log n)$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#include <iostream>
#include <vector>
#include <algorithm>
#define maxn 100010
#define ll long long
using namespace std;

const int p = 998244353;

ll pow_mod(ll x, ll n) {
ll s = 1;
for (; n; n >>= 1, x = x * x % p)
if (n & 1) s = s * x % p;
return s;
}

#define Poly vector<int>
#define len(A) ((int) A.size())
namespace Pol {
inline int add(int a, int b) { return (a += b) >= p ? a -= p : a; }
inline int mul(int a, int b) { return 1ll * a * b % p; }
Poly operator - (const int &v, const Poly &a) {
Poly res(a);
for (int i = 0; i < len(res); ++i) res[i] = p - res[i];
res[0] = add(res[0], v); return res;
}
Poly operator - (const Poly &a, const int &v) {
Poly res(a); res[0] = add(res[0], p - v); return res;
}
Poly operator * (const Poly &a, const int &v) {
Poly res(a);
for (int i = 0; i < len(res) ; ++i) res[i] = mul(res[i], v);
return res;
}

const int N = 4200000;
int P[N];
void init_P(int n) {
int l = 0; while ((1 << l) < n) ++l;
for (int i = 0; i < n; ++i) P[i] = (P[i >> 1] >> 1) | ((i & 1) << l - 1);
}
void NTT(Poly &a, int type) {
static int w[N]; ll G = 3, Gi = pow_mod(G, p - 2); int n = len(a);
for (int i = 0; i < n; ++i) if (i < P[i]) swap(a[i], a[P[i]]);
for (int i = 2, m = 1; i <= n; m = i, i *= 2) {
ll wn = pow_mod(type > 0 ? G : Gi, (p - 1) / i);
w[0] = 1; for (int j = 1; j < m; ++j) w[j] = wn * w[j - 1] % p;
for (int j = 0; j < n; j += i)
for (int k = 0; k < m; ++k) {
int t1 = a[j + k], t2 = 1ll * a[j + k + m] * w[k] % p;
a[j + k] = add(t1, t2);
a[j + k + m] = add(t1, p - t2);
}
}
if (type < 0) {
int inv = pow_mod(n, p - 2);
for (int i = 0; i < n; ++i) a[i] = mul(a[i], inv);
}
}
Poly operator * (const Poly &A, const Poly &B) {
int n = 1, n1 = len(A), n2 = len(B); while (n < n1 + n2 - 1) n <<= 1; init_P(n);
Poly a(n), b(n);
for (int i = 0; i < n1; ++i) a[i] = add(A[i], p);
for (int i = 0; i < n2; ++i) b[i] = add(B[i], p);
NTT(a, 1); NTT(b, 1);
for (int i = 0; i < n; ++i) a[i] = mul(a[i], b[i]);
NTT(a, -1); return a;
}
Poly Der(const Poly &a) {
Poly res(a);
for (int i = 0; i < len(a) - 1; ++i) res[i] = mul(i + 1, res[i + 1]);
res[len(a) - 1] = 0; return res;
}
Poly Int(const Poly &a) {
static int inv[N];
if (!inv[1]) {
inv[1] = 1;
for (int i = 2; i < N; ++i) inv[i] = mul(p - p / i, inv[p % i]);
}
Poly res(a); res.resize(len(a) + 1);
for (int i = len(a); i; --i) res[i] = mul(res[i - 1], inv[i]);
res[0] = 0; return res;
}
Poly Inv(const Poly &a) {
Poly res(1, pow_mod(a[0], p - 2));
int n = 1; while (n < len(a)) n <<= 1;
for (int k = 2; k <= n; k <<= 1) {
int L = 2 * k; init_P(L); Poly t(L);
copy_n(a.begin(), min(k, len(a)), t.begin());
t.resize(L); res.resize(L);
NTT(res, 1); NTT(t, 1);
for (int i = 0; i < L; ++i) res[i] = mul(res[i], add(2, p - mul(t[i], res[i])));
NTT(res, -1); res.resize(k);
} res.resize(len(a)); return res;
}
pair<Poly, Poly> Divide(const Poly &a, const Poly &b) {
int n = len(a), m = len(b);
Poly t1(a.rbegin(), a.rbegin() + n - m + 1), t2(b.rbegin(), b.rend()); t2.resize(n - m + 1);
Poly Q = Inv(t2) * t1; Q.resize(n - m + 1); reverse(Q.begin(), Q.end());
Poly R = Q * b; R.resize(m - 1); for (int i = 0; i < len(R); ++i) R[i] = add(a[i], p - R[i]);
return make_pair(Q, R);
}
Poly Ln(const Poly &a) {
Poly res = Int(Der(a) * Inv(a));
res.resize(len(a)); return res;
}
Poly Exp(const Poly &a) {
Poly res(1, 1);
int n = 1; while (n < len(a)) n <<= 1;
for (int k = 2; k <= n; k <<= 1) {
Poly t(res.begin(), res.end()); t.resize(k); t = Ln(t);
for (int i = 0; i < min(len(a), k); ++i) t[i] = add(a[i], p - t[i]); t[0] = add(t[0], 1);
res = res * t; res.resize(k);
} res.resize(len(a)); return res;
}
Poly Sqrt(const Poly &a) { // a[0] = 1
Poly res(1, 1); ll inv2 = pow_mod(2, p - 2);
int n = 1; while (n < len(a)) n <<= 1;
for (int k = 2; k <= n; k <<= 1) {
Poly t(res.begin(), res.end()), ta(a.begin(), a.begin() + min(len(a), k));
t.resize(k); t = Inv(t) * ta;
res.resize(k); for (int i = 0; i < k; ++i) res[i] = mul(add(res[i], t[i]), inv2);
} res.resize(len(a)); return res;
}
Poly Pow(const Poly &a, int k) { // a[0] = 1
return Exp(Ln(a) * k);
}
Poly Pow(const Poly &a, int k, int kk) {
int n = len(a), t = n, m, v, inv, powv; Poly res(n);
for (int i = n - 1; ~i; --i) if (a[i]) t = i, v = a[i];
if (k && t >= (n + k - 1) / k) return res;
if (t == n) { if (!k) res[0] = 1; return res; }
m = n - t * k; res.resize(m);
inv = pow_mod(v, p - 2); powv = pow_mod(v, kk);
for (int i = 0; i < m; ++i) res[i] = mul(a[i + (k > 0) * t], inv);
res = Exp(Ln(res) * k); res.resize(n);
for (int i = m - 1; ~i; --i) {
ll tmp = mul(res[i], powv);
res[i] = 0, res[i + t * k] = tmp;
}
return res;
}
} // namespace Pol

int n, m, cnt[maxn];
ll inv[maxn];

int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr); cout.tie(nullptr);

cin >> n >> m; ++m; Poly A(m);
for (int i = 1, x; i <= n; ++i) cin >> x, ++cnt[x];
inv[1] = 1;
for (int i = 2; i <= m; ++i) {
inv[i] = (-p / i) * inv[p % i] % p;
inv[i] = (inv[i] + p) % p;
}
for (int i = 1; i < m; ++i)
for (int j = i; j < m; j += i) A[j] = (A[j] + cnt[i] * inv[j / i]) % p;
Poly res = Pol::Exp(A);
for (int i = 1; i < m; ++i) cout << res[i] << "\n";
return 0;
}