校内赛 5G网络

题目描述

简要题意:给定一个二维平面,平面上有 $n$ 个白点,第 $i$ 个白点的坐标为 $(x_i,y_i)$,其能传输的范围为 $r_i$,收益为 $s_i$,第 $i$ 个点能传输到第 $j$ 个点,当且仅当两点之间的欧几里得距离小于等于 $r_i$,现在要将某些点涂黑,如果染黑每个点则必须将其能到达的点都染黑,染黑一个点能得到它的收益,求最大收益

$n\le 100$

Solution

注意到原图是有向图,且一个强连通分量必须同时选,我们缩点后得到一个 $DAG$,然后我们传递闭包,能够发现,现在我们选一个点需要选它连出去的所有点

容易发现这个东西非常像是最大权闭合子图的模型,我们将点分成正权点和负权点,起点连正权点,终点连负权点,然后正权点连它需要的负权点,注意两个正权点之间的依赖关系不会影响

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#define maxn 110
#define ll long long
#define INF 1000000000
using namespace std;

struct Edge {
int to, next, w;
} e[1000000]; int c1, head[maxn];
inline void add_edge(int u, int v, int w) {
e[c1].to = v; e[c1].w = w;
e[c1].next = head[u]; head[u] = c1++;
}

inline void Add_edge(int u, int v, int w) {
add_edge(u, v, w); add_edge(v, u, 0);
}

int dep[maxn], s, t;
bool bfs() {
queue<int> Q; Q.push(s);
fill(dep, dep + maxn, 0); dep[s] = 1;
while (!Q.empty()) {
int u = Q.front(); Q.pop();
for (int i = head[u]; ~i; i = e[i].next) {
int v = e[i].to, w = e[i].w;
if (w > 0 && !dep[v]) {
dep[v] = dep[u] + 1;
Q.push(v); if (v == t) return 1;
}
}
} return 0;
}

int dfs(int u, int _w) {
if (!_w || u == t) return _w;
int s = 0;
for (int i = head[u]; ~i; i = e[i].next) {
int v = e[i].to, w = e[i].w;
if (w > 0 && dep[v] == dep[u] + 1) {
int di = dfs(v, min(_w - s, w));
e[i].w -= di; e[i ^ 1].w += di;
s += di; if (s == _w) break;
}
}
if (s < _w) dep[u] = 0;
return s;
}

int dinic() { int mf = 0;
while (bfs()) mf += dfs(s, INF);
return mf;
}

int n;
int x[maxn], y[maxn], a[maxn], r[maxn];
int g[maxn][maxn], G[maxn][maxn];

int F(int x, int y) { return (x - y) * (x - y); }

int dfn[maxn], low[maxn], bl[maxn], scc, w[maxn], c2;
bool ins[maxn]; stack<int> S;
void tarjan(int u) {
dfn[u] = low[u] = ++c2; ins[u] = 1; S.push(u);
for (int v = 1; v <= n; ++v) {
if (!g[u][v] || u == v) continue;
if (!dfn[v]) tarjan(v), low[u] = min(low[u], low[v]);
else if (ins[v]) low[u] = min(low[u], dfn[v]);
}
if (dfn[u] == low[u]) {
int t; w[++scc] = 0;
do {
t = S.top(); S.pop();
w[scc] += a[t]; bl[t] = scc;
} while (t != u);
}
}

void rebuild() {
for (int i = 1; i <= scc; ++i)
for (int j = 1; j <= scc; ++j) G[i][j] = 0;
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= n; ++j)
if (g[i][j]) G[bl[i]][bl[j]] = 1;
}

void work() {
cin >> n;
fill(head, head + n + 2, -1); c1 = c2 = scc = 0;
for (int i = 1; i <= n; ++i) dfn[i] = low[i] = 0;
for (int i = 1; i <= n; ++i) cin >> x[i] >> y[i] >> r[i] >> a[i];
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= n; ++j)
if (F(x[i], x[j]) + F(y[i], y[j]) <= r[i] * r[i]) g[i][j] = 1;
else g[i][j] = 0;
for (int k = 1; k <= n; ++k)
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= n; ++j) g[i][j] |= g[i][k] & g[k][j];
for (int i = 1; i <= n; ++i) if (!dfn[i]) tarjan(i); rebuild();
s = 0; t = n + 1; int ans = 0;
for (int i = 1; i <= scc; ++i) {
if (w[i] < 0) { Add_edge(i, t, -w[i]); continue; }
ans += w[i]; Add_edge(s, i, w[i]);
for (int j = 1; j <= scc; ++j)
if (w[j] < 0 && G[i][j]) Add_edge(i, j, INF);
} cout << ans - dinic() << "\n";
}

int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr); cout.tie(nullptr);

int T; cin >> T;
while (T--) work();
return 0;
}