CF 277E Binary Tree on Plane

题目描述

http://codeforces.com/problemset/problem/277/E

Solution

注意到河道题目中二叉树的限制为至多有两个儿子

另外注意到边权只跟父亲和儿子有关

那么我们考虑将所有点拆成两个点,第一个点表示作为父亲,第二个点表示作为儿子

最小费用最大流

建图:

$s$ 连 $i$,容量为 $2$,费用为 $0$

如果 $y_i>y_j$,$i$ 连 $j’$,容量为 $1$,费用为 两点的欧几里得距离

$i’$ 连 $t$,容量为 $1$,费用为 $0$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#include <iostream>
#include <queue>
#include <iomanip>
#include <algorithm>
#include <cmath>
#define maxn 1010
#define INF 1000000000
using namespace std;

int n;

pair<int, int> a[maxn];

inline double F(int x) { return x * x; }

inline double D(const pair<int, int> &u, const pair<int, int> &v) {
return sqrt(F(u.first - v.first) + F(u.second - v.second));
}

struct Edge {
int to, next, w;
double fi;
} e[1000000]; int c1, head[maxn];
inline void add_edge(int u, int v, int w, double fi) {
e[c1].to = v; e[c1].w = w; e[c1].fi = fi;
e[c1].next = head[u]; head[u] = c1++;
}

inline void Add_edge(int u, int v, int w, double fi) {
add_edge(u, v, w, fi); add_edge(v, u, 0, -fi);
}

int la[maxn], pre[maxn], fl[maxn], s, t; double dis[maxn]; bool vis[maxn];
bool spfa() {
fill(dis, dis + maxn, INF); dis[s] = 0;
queue<int> Q; Q.push(s); pre[t] = -1; fl[s] = INF; vis[s] = 1;
while (!Q.empty()) {
int u = Q.front(); Q.pop(); vis[u] = 0;
for (int i = head[u]; ~i; i = e[i].next) {
int v = e[i].to, w = e[i].w; double fi = e[i].fi;
if (w > 0 && dis[v] > dis[u] + fi) {
dis[v] = dis[u] + fi; la[v] = i;
fl[v] = min(fl[u], w); pre[v] = u;
if (vis[v]) continue; vis[v] = 1;
Q.push(v);
}
}
}
return ~pre[t];
}

int mf; double mc;
void mcmf() {
while (spfa()) {
int now = t;
mf += fl[t];
mc += fl[t] * dis[t];
while (now != s) {
e[la[now]].w -= fl[t];
e[la[now] ^ 1].w += fl[t];
now = pre[now];
}
}
}


int main() { fill(head, head + maxn, -1);
ios::sync_with_stdio(false);
cin.tie(nullptr); cout.tie(nullptr);

cin >> n;
for (int i = 1; i <= n; ++i) cin >> a[i].first >> a[i].second;
s = 0; t = 2 * n + 1;
for (int i = 1; i <= n; ++i) {
Add_edge(s, i, 2, 0);
Add_edge(i + n, t, 1, 0);
for (int j = 1; j <= n; ++j)
if (a[i].second > a[j].second)
Add_edge(i, j + n, 1, D(a[i], a[j]));
} mcmf();
if (mf != n - 1) cout << "-1";
else cout << fixed << setprecision(7) << mc << "\n";
return 0;
}