题目描述
http://codeforces.com/gym/102835/problem/E
Solution
我们令 $f[l][r][o]$ 表示将区间 $[l,r]$ 都清空后颜色 $o$ 最多剩多少
另外在单独记录一下区间 $[l,r]$ 是否可以被全部清空
转移需要再枚举一个 $k$
时间复杂度 $O(n^3)$
| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 
 | #include <iostream>#include <set>
 #include <vector>
 #include <algorithm>
 #include <cstring>
 #define maxn 510
 using namespace std;
 
 int id[256];
 
 int n, m, L[maxn], R[maxn];
 
 char s[maxn];
 
 int f[maxn][maxn][8], g[maxn][maxn];
 
 int main() {
 ios::sync_with_stdio(false);
 cin.tie(nullptr); cout.tie(nullptr);
 
 id['R'] = 1; id['G'] = 2; id['B'] = 3; id['C'] = 4; id['M'] = 5; id['Y'] = 6; id['K'] = 7;
 cin >> s + 1 >> m; n = strlen(s + 1);
 fill(f[0][0], f[0][0] + maxn * maxn * 8, -1);
 for (int i = 1; i <= n; ++i)
 L[i] = s[i] == s[i - 1] ? L[i - 1] : i;
 for (int i = n; i; --i)
 R[i] = s[i] == s[i + 1] ? R[i + 1] : i;
 for (int l = 1; l <= n; ++l)
 for (int i = 1, j = l; j <= n; ++i, ++j) {
 if (R[i] >= j) f[i][j][id[s[i]]] = j - i + 1;
 for (int o = 1; o <= 7; ++o)
 for (int k = i; k < j; ++k) {
 int u = -1, v = -1;
 if (~f[i][k][o] || g[i][k]) u = max(0, f[i][k][o]);
 if (~f[k + 1][j][o] || g[k + 1][j]) v = max(0, f[k + 1][j][o]);
 if (~u && ~v) f[i][j][o] = max(f[i][j][o], u + v);
 }
 for (int o = 1; o <= 7; ++o) g[i][j] |= f[i][j][o] >= m;
 
 }
 cout << (g[1][n] ? "Yes" : "No") << "\n";
 return 0;
 }
 
 |