题目描述
https://atcoder.jp/contests/agc038/tasks/agc038_c
简要题意:求 $\sum_{i=1}^n\sum_{j=1}^n[a_i,a_j]$
$n\le 2\times 10^5,a_i\le 10^6$
Solution
令 $N=max\lbrace a_i\rbrace$
这个东西可以 $O(n\log n)$ 做
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
| #include <iostream> #include <cstdio> #include <queue> #include <algorithm> #include <vector> #define maxn 200010 #define maxm 1000010 #define ll long long using namespace std;
const int p = 998244353;
ll pow_mod(ll x, ll n) { ll s = 1; for (; n; n >>= 1, x = x * x % p) if (n & 1) s = s * x % p; return s; }
int n, a[maxn];
int pri[maxm], c1, mu[maxm]; bool isp[maxm]; ll f[maxm]; void init_isp(int n) { mu[1] = 1; for (int i = 2; i <= n; ++i) { if (!isp[i]) pri[++c1] = i, mu[i] = -1; for (int j = 1; j <= c1 && i * pri[j] <= n; ++j) { isp[i * pri[j]] = 1; if (i % pri[j] == 0) { mu[i * pri[j]] = 0; continue; } mu[i * pri[j]] = -mu[i]; } } for (int i = 1; i <= n; ++i) for (int j = i; j <= n; j += i) f[j] = (f[j] + i * mu[i]) % p; for (int i = 1; i <= n; ++i) f[i] = f[i] * pow_mod(i, p - 2) % p; }
int cnt[maxm];
ll g[maxm];
int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr);
cin >> n; int N; init_isp(N = 1000000); for (int i = 1; i <= n; ++i) cin >> a[i], ++cnt[a[i]]; for (int i = 1; i <= N; ++i) { for (int j = i; j <= N; j += i) g[i] = (g[i] + 1ll * j * cnt[j]) % p; g[i] = g[i] * g[i] % p; } ll ans = 0; for (int i = 1; i <= N; ++i) ans = (ans + f[i] * g[i]) % p; for (int i = 1; i <= n; ++i) ans = (ans - a[i]) % p; ans = ans * pow_mod(2, p - 2) % p; cout << (ans + p) % p << "\n"; return 0; }
|