题目描述
https://www.luogu.com.cn/problem/P1829
简要题意:求 $\sum_{i=1}^n\sum_{j=1}^m[i,j]$
$n,m\le 10^7$
Solution
令 $f(n)=n\sum_{d|n}d\mu(d)$,这东西依然可以 $O(n)$ 预处理前缀和
所以我们依然能够做到 $O(n)$ 预处理,$O(\sqrt n)$ 单次查询
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
| #include <iostream> #include <cstdio> #define maxn 10000010 #define ll long long using namespace std;
const int p = 20101009;
int n, m, k;
int pri[maxn], cnt, a[maxn]; bool isp[maxn]; ll f[maxn]; void init_isp(int n) { for (int i = 2; i <= n; ++i) { if (!isp[i]) pri[++cnt] = i, a[i] = 1; for (int j = 1; j <= cnt && i * pri[j] <= n; ++j) { isp[i * pri[j]] = 1; if (i % pri[j] == 0) { a[i * pri[j]] = a[i]; break; } a[i * pri[j]] = i; } } f[1] = 1; for (int i = 1; i <= cnt; ++i) for (ll j = pri[i]; j <= n; j *= pri[i]) f[j] = j * (1 - pri[i]) % p; for (int i = 2; i <= n; ++i) if (a[i] > 1) f[i] = f[i / a[i]] * f[a[i]] % p; for (int i = 1; i <= n; ++i) f[i] = (f[i] + f[i - 1]) % p; }
ll F(ll n) { return n * (n + 1) / 2 % p; }
int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr);
cin >> n >> m; init_isp(n); ll ans = 0; if (n > m) swap(n, m); for (int l = 1, r; l <= n; l = r + 1) { r = min(n / (n / l), m / (m / l)); ans = (ans + (f[r] - f[l - 1]) * F(n / l) % p * F(m / l)) % p; } cout << (ans + p) % p << "\n"; return 0; }
|