1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
| #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #define ll long long #define maxn 10010 using namespace std;
const int p = 1000000007;
int n; ll m;
struct Matrix { #define n 3 ll a[n][n];
void clear() { fill(a[0], a[0] + 3 * 3, 0); }
Matrix() { clear(); }
void setone() { for (int i = 0; i < n; ++i) a[i][i] = 1; }
friend Matrix operator * (const Matrix &u, const Matrix &v) { Matrix w; for (int k = 0; k < n; ++k) for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) w.a[i][j] = (w.a[i][j] + (ll) u.a[i][k] * v.a[k][j]) % p; return w; } #undef n };
Matrix pow(Matrix x, ll n) { Matrix s; s.setone(); for (; n; n >>= 1) { if (n & 1) s = s * x; x = x * x; } return s; }
struct node { ll k, x, y; } a[maxn];
ll b[maxn * 3], cnt; void init_hash() { int c1 = 0; for (int i = 1; i <= n; ++i) b[++c1] = a[i].x, b[++c1] = a[i].y, b[++c1] = a[i].y + 1; b[++c1] = 2; b[++c1] = m; sort(b + 1, b + c1 + 1); cnt = unique(b + 1, b + c1 + 1) - b - 1; for (int i = 1; i <= n; ++i) { a[i].x = lower_bound(b + 1, b + cnt + 1, a[i].x) - b; a[i].y = lower_bound(b + 1, b + cnt + 1, a[i].y) - b; } }
int d[3][maxn * 3];
int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr);
cin >> n >> m; for (int i = 1; i <= n; ++i) cin >> a[i].k >> a[i].x >> a[i].y, --a[i].k; init_hash(); for (int i = 1; i <= n; ++i) ++d[a[i].k][a[i].x], --d[a[i].k][a[i].y + 1]; for (int i = 0; i < 3; ++i) for (int j = 1; j <= cnt; ++j) d[i][j] += d[i][j - 1]; Matrix ans; ans.a[1][0] = 1; for (int i = 1; i < cnt; ++i) { Matrix x; x.a[0][0] = x.a[0][1] = 1; x.a[1][0] = x.a[1][1] = x.a[1][2] = 1; x.a[2][1] = x.a[2][2] = 1; for (int k = 0; k < 3; ++k) if (d[k][i]) for (int j = 0; j < 3; ++j) x.a[k][j] = 0; ans = pow(x, b[i + 1] - b[i]) * ans; } cout << ((ll) ans.a[0][0] + ans.a[1][0] + ans.a[2][0]) % p << "\n"; return 0; }
|