CF 900E Maximum Questions

题目描述

https://codeforces.com/problemset/problem/900/E

Solution

注意到在预处理之后我们可以 $O(1)$ 判断一段区间是否可以组成对应的子串

所以我们令 $f[i]$ 表示到 $i$ 为止,最多有多少个给定串,$g[i]$ 表示在 $f[i]$ 最大的情况下所需要的最少操作

时间复杂度 $O(n)$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#include <iostream>
#include <cstdio>
#define maxn 100010
using namespace std;

int n, m;

char s[maxn];

int a[maxn], b[maxn], p[maxn];

int f[maxn], g[maxn];
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr); cout.tie(nullptr);

cin >> n >> s + 1 >> m; int la = m + 1 >> 1, lb = m / 2;
for (int i = 1; i <= n; ++i)
if (s[i] == 'a') a[i] = a[i - 2] + 1, b[i] = 0, p[i] = p[i - 1];
else if (s[i] == 'b') b[i] = b[i - 2] + 1, a[i] = 0, p[i] = p[i - 1];
else a[i] = a[i - 2] + 1, b[i] = b[i - 2] + 1, p[i] = p[i - 1] + 1;
for (int i = 1; i <= n; ++i) {
f[i] = f[i - 1]; g[i] = g[i - 1];
if (m & 1 && a[i] >= la && b[i - 1] >= lb || m % 2 == 0 && b[i] >= lb && a[i - 1] >= la)
if (f[i - m] + 1 > f[i]) f[i] = f[i - m] + 1, g[i] = g[i - m] + p[i] - p[i - m];
else if (f[i - m] + 1 == f[i]) g[i] = min(g[i], g[i - m] + p[i] - p[i - m]);
} cout << g[n] << "\n";
return 0;
}