题目描述
https://codeforces.com/gym/102861/problem/I
Solution
我们注意到最少询问次数就是叶子节点的个数
如果某个叶子没有选,则一定要选这个叶子到根的路径上的一个点
所以我们令 $f[u][0/1]$ 表示子树 $u$ 内是否还需要一次询问
转移大概是这样 $f[u][0] = \prod f[v][0] + \sum \frac{\prod f[v][0]}{f[v][0]} f[v][1]$
$f[v][1]=\sum \frac{\prod f[v][0]}{f[v][0]} f[v][1]$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
| #include <iostream> #include <cstdio> #include <algorithm> #include <vector> #define maxn 100010 #define ll long long using namespace std;
const int p = 1000000007;
int n, m;
struct Edge { int to, next; } e[maxn]; int c1, head[maxn]; inline void add_edge(int u, int v) { e[c1].to = v; e[c1].next = head[u]; head[u] = c1++; }
ll f[maxn][2], suf[maxn], pre[maxn]; void dfs(int u) { vector<int> a(1), b(1); ll s1 = 1, s2 = 0; for (int i = head[u]; ~i; i = e[i].next) { int v = e[i].to; dfs(v); a.push_back(f[v][0]); b.push_back(f[v][1]); s1 = s1 * f[v][0] % p; } int sz = a.size() - 1; pre[0] = suf[sz + 1] = 1; for (int i = 1; i <= sz; ++i) pre[i] = pre[i - 1] * a[i] % p; for (int i = sz; i; --i) suf[i] = suf[i + 1] * a[i] % p; for (int i = 1; i <= sz; ++i) s2 = (s2 + pre[i - 1] * suf[i + 1] % p * b[i]) % p; f[u][0] = (s1 + s2) % p; f[u][1] = s2; if (!sz) f[u][0] = f[u][1] = 1; }
int main() { fill(head, head + maxn, -1); ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr);
cin >> n; for (int i = 2; i <= n; ++i) { int x; cin >> x; add_edge(x, i); } dfs(1); cout << f[1][0] << "\n"; return 0; }
|