Luogu P3964 [TJOI2013]松鼠聚会

题目描述

https://www.luogu.com.cn/problem/P3964

简要题意:给定 $n$ 个八连通二维平面上的点 $(x_i,y_i)$,求选一个给定点 $(x_i,y_i)$ 作为集合点,使得其它所有给定点到它的距离和最小

$n\le 10^5$

Solution

切比雪夫距离计算距离和很不方便,我们转换成曼哈顿距离将两维分开

最后将答案除 $2$ 即可,注意到答案一定是偶数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#include <iostream>
#include <cstdio>
#include <algorithm>
#define maxn 100010
#define cn const node
#define ll long long
#define INF 1000000000000000000ll
using namespace std;

int n;

struct node {
int x, y, idx, idy;
} a[maxn];

ll sx[maxn], sy[maxn];

ll ans = INF;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr); cout.tie(nullptr);

cin >> n;
for (int i = 1; i <= n; ++i) {
int x, y; cin >> x >> y;
a[i].x = x + y; a[i].y = x - y;
}
sort(a + 1, a + n + 1, [](cn &u, cn &v) { return u.x < v.x; });
for (int i = 1; i <= n; ++i) {
sx[i] = sx[i - 1] + a[i].x;
a[i].idx = i;
}
sort(a + 1, a + n + 1, [](cn &u, cn &v) { return u.y < v.y; });
for (int i = 1; i <= n; ++i) {
sy[i] = sy[i - 1] + a[i].y;
a[i].idy = i;
}
for (int i = 1; i <= n; ++i) {
int idx = a[i].idx, idy = a[i].idy, x = a[i].x, y = a[i].y;
ll v = 1ll * x * idx - sx[idx] + (sx[n] - sx[idx]) - 1ll * x * (n - idx);
v += 1ll * y * idy - sy[idy] + (sy[n] - sy[idy]) - 1ll * y * (n - idy);
ans = min(ans, v);
} cout << ans / 2 << endl;
return 0;
}