Luogu P4366 [Code+#4]最短路

题目描述

https://www.luogu.com.cn/problem/P4366

简要题意:给定一个有 $n$ 个点的完全图,无向边 $$ 的权值为 $(u~xor~v)\times C$,$C$ 是给定的常数,现再给定 $m$ 条单向边 $(u,v,w)$ 和起点 $s$ 以及终点 $t$,求 $s$ 到 $t$​ 的最短路

$n\le 10^5,m\le 5\times 10^5$

Solution

我们对于特殊的边按位考虑,也就是把边拆开

对于点 $u$,向 $u~xor~2^i$ 连边,边权为 $C\cdot2^i$​

然后跑最短路即可

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cctype>
#include <queue>
#define maxn 100010
#define maxm 500010
#define ll long long
#define gc getchar
#define cQ const Queue
#define INF 1000000000000000000ll
using namespace std;

int read() {
int x = 0; char c = gc();
while (!isdigit(c)) c = gc();
while (isdigit(c)) x = x * 10 + c - '0', c = gc();
return x;
}

int n, m, C;

struct Edge {
int to, next, w;
} e[maxn * 20 + maxm]; int c1, head[maxn];
inline void add_edge(int u, int v, int w) {
e[c1].to = v; e[c1].w = w;
e[c1].next = head[u]; head[u] = c1++;
}

struct Queue {
int k; ll v;

Queue() {}
Queue(int _k, ll _v) { k = _k; v = _v; }

friend bool operator < (cQ &u, cQ &v) { return u.v > v.v; }
} ; priority_queue<Queue> Q;

bool vis[maxn]; int s, t; ll dis[maxn];
void dijkstra() {
for (int i = 0; i <= n; ++i) dis[i] = INF; dis[s] = 0;
Q.push(Queue(s, dis[s]));
while (!Q.empty()) {
int u = Q.top().k; Q.pop();
if (vis[u]) continue; vis[u] = 1;
for (int i = head[u]; ~i; i = e[i].next) {
int v = e[i].to, w = e[i].w;
if (dis[v] > dis[u] + w) {
dis[v] = dis[u] + w;
Q.push(Queue(v, dis[v]));
}
}
}
}

int main() { memset(head, -1, sizeof head);
n = read(); m = read(); C = read();
for (int i = 1; i <= m; ++i) {
int x = read(), y = read(), z = read();
add_edge(x, y, z);
} s = read(); t = read();
for (int u = 0; u <= n; ++u)
for (int i = 0; i < 20; ++i) {
int v = u ^ 1 << i; if (v > n) continue ;
add_edge(u, v, (1 << i) * C);
}
dijkstra(); cout << dis[t] << endl;
return 0;
}